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The different close-packed polytypes MX and MX2 have been enumerated for

each of the possible space groups by counting the corresponding Zhdanov

symbols for each space group and period of stacking, P, by the use of elementary

combinatorial techniques. In special cases, simple closed formulae are obtained

for these numbers as functions of P. The symmetry properties of the Zhdanov

symbol have been investigated with the help of its cyclotomic representation and

the two-color symmetry point group thereof. Zhdanov-like rules have been

developed for MX2 polytypes. The SiC cases have been generated to P = 18

under the ‘1-exclusion’ rule and the possible diamond polytypes have been

examined.

1. Introduction

Among the many families of polytypes [for a definition of the

term ‘polytype’ see Guinier et al. (1984); for a survey of the

phenomenon of polytypism, see Trigunayat (1991)], the so-

called close-packed polytypes are those in which the several

polymorphic variants result from different modes of stacking

hexagonal layers, piled up in ways similar to those exhibited by

the closest packings of equal spheres. In particular, it is all-

important in this connection that the heaping of the layers on

top of each other occurs in such a way that the projection of a

layer parallel to the axis of stacking (be it normal to the layers

or otherwise) occurs in one of three possible settings, labeled

A, B and C, and such that no two consecutive layers have the

same label. Of course, these conditions arise naturally when

one stacks close-packed hexagonal layers of equal spheres (i.e.

planar layers in which every sphere is surrounded by six other

spheres, all in contact), with the aim of obtaining an optimal

packing: every sphere of a layer must rest on three spheres of

the layer directly below, and this can be done in two ways,

labeled B and C, if we label the initial layer as A.

The close-packed polytypes generally are compounds of a

large anion, atom X, and a smaller metal atom, atom M; the

large atoms play the role of the spheres in the close packing

and the smaller atoms can be looked on as interstitial atoms.

However, the insertion of M atoms in the holes of a packing of

spheres generally entails that these spheres are no longer in

contact, so the name ‘close packed’ must not be taken too

literally: the important feature is that the array of one of the

two classes of atoms (normally the larger X atoms) follows the

same rules as the stacking of closest-packed layers of spheres.

This point of view is useful even in a case like that of diamond

(see below), where C atoms fill a subset of the tetrahedral

holes of a ‘close packing’ of C atoms, the resulting structure

being a tetrahedral network where each sphere (C atom) only

touches four equal spheres, a far cry from the 12 contacts

(kissing number in dimension 3) present in any close packing

of equal spheres.

The present paper deals with the enumeration and classi-

fication of the close-packed polytypes of formula MX and

MX2 in the possible space groups. The MX polytypes are

tetrahedral frameworks of corner-linked tetrahedra, while the

MX2 polytypes are exclusively octahedral structures. We

assume the stackings are periodic and that the structure (the

stacking) is repeated by a vector, not necessarily normal to

the layers, encompassing P layers; we try to find the number

N(P) of distinguishable structures that could possibly be

constructed for each period P. This author solved the corre-

sponding problem for equal spheres (Iglesias, 1981a) by simple

combinatorial methods. Not long after this, McLarnan (1981)

solved the same problem by the use of more advanced tech-

niques (Pólya’s theory of counting). McLarnan imposed the

condition that the translation repeating the stacking be normal

to the layers: this constraint is equivalent to defining a

hexagonal triple cell for all rhombohedral structures, whereby

their period is three times that corresponding to the rhom-

bohedral primitive translation. The present author enumer-

ated the stackings by counting the corresponding Zhdanov

symbols (see definition below) and, hence, only primitive

(hexagonal and rhombohedral) translations were allowed. The

values in Table 1 of McLarnan (1981) can therefore be

reconciled with those in Table 1 of Iglesias (1981a) by the

equivalence NH(P) + NR(P/3) = NMc(P) when P is a multiple

of 3 and NH(P) = NMc(P) otherwise; the left-hand sides of

these equalities represent values from Iglesias (1981a) (H

stands for hexagonal, R for rhombohedral) and those on the



right-hand side are from McLarnan’s. The distribution of the

packings of equal spheres among the possible space groups

has been studied by McLarnan (1981) and Estevez-Rams et al.

(2005) by counting Hägg symbols, and by the present author

(Iglesias, 2006a) by counting Zhdanov symbols.

McLarnan (1981) also counted several kinds of polytypes,

including those of formula MX and MX2 which are the object

of this paper, although these polytypes were not classified

according to space group, which they are in this paper; still, the

main purpose of this paper is to show that these counting

problems can be solved by rather elementary methods that do

not require of the reader the mastering of the most sophisti-

cated techniques, albeit the elegance of these may be lost. Our

method is based on simple combinatorial lore, in connection

with a graphical interpretation of the Zhdanov symbol, which

makes it extremely simple to detect equivalence among these

symbols through the analysis of the two-color symmetry group

of the graphical representation. We have used it successfully in

the enumeration of the possible sphere stackings in bulk

(Iglesias, 1981a) and by the space group (Iglesias, 2006a).

Each sphere close packing can be represented by its

Zhdanov symbol (Zhdanov, 1945, 1965), which consists of an

even number of nonzero (see exception below) integers, to be

called ‘components’ in what follows, n1n2n3 . . . n2k, such that

�ni = P. The symbol represents n1 layers stacked . . . A !

B! C! A . . . , followed by n2 layers stacked . . . A! C!

B! A . . . and so on, when we move along, say, the positive

direction of the stacking axis. If we define n1 + n3 + n5 + . . . =

p and n2 + n4 + n6 + . . . = q, then for p� q � 0 ðmod 3Þ the

lattice of the stacking will be hexagonal, otherwise it will be

rhombohedral. The Zhdanov symbol uniquely represents the

structure but the reciprocal is not true: the same structure can

be represented by different Zhdanov symbols, i.e. the mapping

between structures and Zhdanov symbols is a one-to-many

mapping. If one intends to count structures by counting

possible Zhdanov symbols, the different ways in which a

Zhdanov symbol may vary while the represented polytype

structure remains invariant must be analyzed. Also, when

enumerating all Zhdanov symbols corresponding to a given

value of P, care must be exercised to eliminate those cases

showing internal periodicities, which can be recognized

because there is a run of an even number of components which

repeats d times within the Zhdanov symbol: these components

are really the Zhdanov symbol of a polytype of period P/d,

and as such it must be counted. Thus, when one insists on

counting all polytypes as hexagonal, as other authors do, truly

rhombohedral polytypes show an internal period of P/3, i.e. a

run of an even number of components appear thrice repeated

in the Zhdanov symbol. This cumbersome notation is some-

times abbreviated by enclosing these components in

parentheses, and adding the subindex 3 to the symbol; for

instance, ((33)534)3 is SiC polytype 111R (i.e. P = 111, rhom-

bohedral lattice, which for us would be P = 37, since the

structure repeats every 37 layers along the rhombohedral

translation).

Since the Zhdanov symbol is meant to represent one-

dimensional periodicity, it is natural to impose cyclic boundary

conditions, of the kind of those (see, for instance, Kittel, 1967)

used frequently in solid-state physics1 and sometimes in one-

dimensional problems in crystallography (Patterson, 1944;

Iglesias, 1981b). The natural representation is to divide a circle

into P equal arcs and place at the resulting points n1 black

dots, followed by n2 white dots, followed by n3 black dots etc.

We call this the circular representation of the Zhdanov

symbol, or CRZS for short. Rules for the identification of

polytype symmetry elements in its Zhdanov symbol were

found for sphere packings (Zhdanov, 1945, 1965), and were

quoted in International Tables for X-ray Crystallography

(Patterson & Kasper, 1959). These appear to be necessary

conditions: when a symmetry element is present in the struc-

ture of the sphere stacking, then ‘it shows up in the Zhdanov’s

symbol’ (Patterson & Kasper, 1959) in a way prescribed by

Zhdanov’s rules. In fact, they are also sufficient conditions, i.e.

the presence of certain symmetry in the Zhdanov symbol

necessarily implies certain other symmetry elements in the

structure of the stacking thus represented; a proof of this will

be published elsewhere (Iglesias, 2006b). The symmetry

properties of the structure can be easily studied by considering

the two-color two-dimensional point group of the CRZS. One

thing to note is that, since the minimal symmetry of a close-

packed polytype is P3m1, and this group has mirror planes, no

polytype can be an enantiomorph of a different (non-

congruent) polytype: each polytype is its own enantiomorph,

and two polytypes are either congruent or different.

2. Polytypes MX

2.1. Preliminary considerations

The generic name MX is frequently used to denote stack-

ings of hexagonal layers of spheres (X atoms) placed with

respect to each other with sphere closest packing, although

contact between these spheres is often impossible because half

of the tetrahedral holes, all tetrahedra having three vertices on

a layer and the fourth one pointing up (i.e. in the positive

direction of the normal to the layers), are filled with another

(or the same, see below) kind of sphere (the M atom). This

results in a tetrahedral coordination of the M atoms by the X

atoms, and reciprocally, in such a way that each M sphere has

three bonds to three X spheres lying in a layer, the bonds

being inclined 19�280 to the layers, and the fourth bond is

perpendicular to the layers. Since all interlayer spaces between

X spheres contain M spheres, one could equally well think of

the structure as constituted by the packing, in a close-packed

fashion, of hexagonal double layers, i.e. hexagonal planar

lattices having at each node a dumb-bell constituted of one M

and one X sphere, such that the dumb-bell handle is normal to

the layer and the polarity of the dumb-bell is preserved

throughout. These layers of dumb-bells can be stacked in the

usual A, B, C configurations, the dumb-bell pairs now taking

the place of the individual spheres in a closest packing of equal

spheres. Since the point symmetry of an isolated dumb-bell is
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1mm, which does not have a mirror plane normal to the

dumb-bell handle, these polytypes cannot have such a plane of

reflection parallel to the layers as an operation of symmetry;

hence the possible space groups are drastically limited among

the supergroups of P3m1 (Iglesias, 2006a) to F �443m, P63mc,

P3m1 and R3m. Space group F �443m corresponds to the

exceptional Zhdanov symbol 10, the only Zhdanov symbol

containing a zero, and is the only possible cubic space group;

we may recall that for the full symmetry group of the sphere

this stacking belongs to space group Fm�33m, with mirror planes

normal to the cubic threefold axes, which are now lost. Poly-

types of this kind are shown by SiC (see below), ZnS [Stein-

berg (1983) lists about 150 characterized polytypes], ZnSe,

GaN, AlN, InN (Strite & Morkoç, 1992), BN (Huang & Zhu,

2000) etc.

The Zhdanov symbol of a polytype MX can be defined to be

the Zhdanov symbol of the stacking of the X layers (or M

layers) or it can be thought of as the Zhdanov symbol of the

stacking of the dumb-bell layers: both ways of thinking

produce indistinguishable results. We shall think of the

Zhdanov symbol as representing the stacking of layers of

dumb-bells, with a polarity defined by the order M–X (say) in

the positive sense of the axis of stacking, and a stipulated

distance (say the length of the handle). Since we intend to

count the possible polytypes by enumerating the corre-

sponding Zhdanov symbols, we need to establish which

transformations of the Zhdanov symbol will leave the poly-

type structure invariant. To begin with, we can change the

starting point in the Zhdanov symbol by shifting it by any

number of components. However, since the two spheres

constituting the dumb-bell are, in general, unequal (see

important exception below), it is quite clear that a reversal of

the Zhdanov symbol will represent, if taken to be a new

Zhdanov symbol, a polytype incongruent with the original

one. To see this, we select the clockwise sense of describing the

CRZS as corresponding to a description of the stacking in the

positive sense of the stacking axis (normally the c axis) and

take black to represent + Hägg signs [i.e. . . . A! B! C!

A . . . , see Verma & Krishna (1966)], white to symbolize �

Hägg signs (i.e. . . . A! C! B!A . . . ); we realize that for

a general configuration there are four CRZS intimately

related, constituting a quartet (see Fig. 1). They are related in

pairs by a mirror line, and likewise by an anti-mirror line and

anti-twofold rotation, in such a way that each term of the

quartet is related to the other three terms by means of the

three symmetry operations described. Two members of a

quartet related by an anti-twofold rotation (for instance, in

Figs. 1a and d) have exactly the same Zhdanov symbol, but

every black dot is now white and, reciprocally; if we start from

an A layer clockwise in both cases, in the run of three dots of

the same color marked with a cross, we can see that the

sequence2 in Fig. 1(a) goes as ABCACBCAC . . . , while the

sequence in Fig. 1(d) is ACBABCBAB . . . ; in other words, the

A layer remains invariant, and B and C are exchanged. But

this is precisely (Jain & Trigunayat, 1977) the description of

the original structure after rotation through 60� around an axis

normal to the layers, and passing through the dumb-bells of

the A layer: both CRZS represent the same polytype struc-

ture. The CRZS in Figs. 1(a) and (b) represent, in general,

different polytypes (Jain & Trigunayat, 1977) but the duet will

degenerate into a singlet whenever the CRZS possesses a line

of mirror symmetry: the two CRZS in Fig. 2 represent,

therefore, a unique polytype structure. The same result will be

obtained when the CRZS possesses an anti-mirror line.

2.2. Enumerating MX polytypes

We are now ready to compute the number of distinguish-

able polytype structures of this MX family for a given repeat

period P. To that end, we use the function (Iglesias, 1979,

1981a, 2006a)

aðp; qÞ ¼
1

pþ q

X
djðp;qÞ

�ðdÞ
ððpþ qÞ=dÞ!

ðp=dÞ!ðq=dÞ!
; ð1Þ
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Figure 1
A quartet of CRZS for polytypes MX. There are only two different
polytypes, that represented by (a) or (d) and that represented by (b) or
(c).

Figure 2
The duet of polytypes MX is degenerate because the CRZS possesses a
mirror line of symmetry.

2 Notice that in this example p� q ¼ 5� 3 � 2 ðmod 3Þ; the polytypes are
rhombohedral and their ABC sequences repeat after three complete turns
around the circle.
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Table 1
Distribution of MX polytypes among the possible space groups.

P P63mc P3m1 R3m

2 1 0 0
3 0 0 1
4 1 0 1
5 0 1 2
6 1 1 3
7 0 3 6
8 2 4 10
9 0 9 19

10 3 15 33
11 0 31 62
12 5 53 112
13 0 105 210
14 9 189 387
15 0 363 728
16 16 672 1360
17 0 1285 2570
18 28 2407 4845
19 0 4599 9198
20 51 8704 17459
21 0 16641 33288
22 93 31713 63519
23 0 60787 121574
24 170 116390 232960
25 0 223696 447392
26 315 429975 860265
27 0 828495 1657009
28 585 1597440 3195465
29 0 3085465 6170930
30 1091 5964488 11930100
31 0 11545611 23091222
32 2048 22368256 44738560
33 0 43383477 86767016
34 3855 84212475 168428805
35 0 163617801 327235602
36 7280 318140816 636289024
37 0 619094385 1238188770
38 13797 1205595657 2411205111
39 0 2349383715 4698767640
40 26214 4581280972 9162588158
41 0 8939118925 17878237850
42 49929 17452532040 34905114396
43 0 34093383807 68186767614
44 95325 66637004800 133274104925
45 0 130312488852 260624978432
46 182361 254959096461 509918375283
47 0 499069107643 998138215286
48 349520 977343435440 1954687221760
49 0 1914795759936 3829591519872
50 671088 3752999242080 7505999155248
51 0 7358822919255 14717645841080
52 1290555 14434613329920 28869227950395
53 0 28324525958305 56649051916610
54 2485504 55599993740209 111199989970767
55 0 109178172784733 218356345569466
56 4793490 214457121917220 428914248627930
57 0 421389438813693 842778877636584
58 9256395 828248201161575 1656496411579545
59 0 1628420204246959 3256840408493918
60 17895679 3202559723079823 6405119464072784
61 0 6300117511512825 12600235023025650
62 34636833 12397005402788853 24794010840214539
63 0 24400455123937788 48800910247908864
64 67108864 48038395980546048 96076792028200960
65 0 94598687557484859 189197375114969718
66 130150493 186330748132489640 372661496395193292
67 0 367099384551433863 734198769102867726
68 252645135 723401728212336640 1446803456677318415
69 0 1425835290721450449 2851670581443022472
70 490853403 2810932429952315079 5621864860395483561
71 0 5542683665339959171 11085367330679918342
72 954437120 10931403894895178240 21862807790745026560



where �(n), the Möbius function (see, for instance, Hardy &

Wright, 1979), is defined by

�ðnÞ ¼
1; n ¼ 1

0; n contains a squared factor

ð�1Þk; n has k different prime factors.

(
ð2Þ

The function aðp; qÞ counts the number of different CRZS of p

black and q white dots, P = p + q. In this expression, sequences

showing inner periodicity are properly assigned to period P/d,

where d|(p, q) is a divisor of (p, q), the greatest common

divisor of p and q. From Figs. 1 and 2, it can be deduced that

we just need to consider those cases for which p � q, since the

cases for which p > q are represented by CRZS0 where black

and white are exchanged, and we have seen that all of them

are equivalent to sequences for which p < q. The case p = q, as

is usual (Iglesias, 1981a, 2006a), requires special care. In

principle, we ought to halve a(P/2, P/2) to get rid of the two

configurations related by the anti-twofold rotation in Fig. 1,

since we have reasoned above that configurations related by

this kind of operation (those diagonally related in Fig. 1)

represent exactly the same polytype structure and are counted

as separate cases in the formula for a(p, p). However, those

CRZS having anti-twofold symmetry are related to themselves

by this operation (Fig. 3). Hence, if we simply halve

a(P/2, P/2), we will be subtracting these cases twice. Taking all

this into account, the number of different MX polytypes

having periodicity P is

NMX
totalðPÞ ¼

P
p<q
pþq¼P

aðp; qÞ þ 1
2 kðPÞfaðP=2;P=2Þ þATFðP=2Þg;

ð3Þ

where

kðnÞ ¼
1 n even

0 n odd

n
ð4Þ

and ATFðpÞ is the number of CRZS having p black and p

white dots showing at least an anti-twofold axis of symmetry.

This number is (Iglesias, 1981a, 2006a)

ATFðpÞ ¼
1

p

X
odjp

�ðodÞ2½ðp=odÞ�1�; ð5Þ

where the summation runs over all odd divisors, od, of p.

Hexagonal and rhombohedral cases can be separately

counted by restricting the above sum to the cases

p� q � 0 ðmod 3Þ (hexagonal cases):

research papers
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Table 1 (continued)

P P63mc P3m1 R3m

73 0 21563317273377375405 43126634546754750810
74 1857283155 42543842186776632975 85087684375410549105
75 0 83953181917682357808 167906363835365163008
76 3616814565 165697069571962306560 331394139147541427685
77 0 327090319159802265879 654180638319604531758
78 7048151355 645793707054397583640 1291587414115844178900
79 0 1275238206344545542939 2550476412689091085878
80 13743895344 2518595457521314850272 5037190915056373595888
81 0 4975003372899707709381 9950006745799417075771
82 26817356775 9828665200101058141875 19657330400228933640525
83 0 19420495094210910437047 38840990188421820874094
84 52357696365 38378597448048559135005 76757194896149479161840
85 0 75854169073859085471503 151708338147718170943006
86 102280151421 149944287704071865909121 299888575408246011969663
87 0 296441580288644698758195 592883160577289403687320
88 199911205050 586145851934232386326900 1172291703868664683858850
89 0 1159119886971329845411165 2318239773942659690822330
90 390937467284 2292481554231925063313852 4584963108464241076025088
91 0 4534578898481246428201905 9069157796962492856403810
92 764877654105 8970579994821086276485120 17941159989642937430624345
93 0 17748244290829824718190937 35496488581659649459473096
94 1497207322929 35118866362704825263178309 70237732725411147733679547
95 0 69498388170407313678546405 138996776340814627357092810
96 2932031006720 137548893253929186945751040 275097786507861305967247360
97 0 272261726853142053586061685 544523453706284107172123370
98 5744387279808 538967091933767174446194048 1077934183867540093279667904
99 0 1067045959788071886738353196 2134091919576143773563473408

100 11258999068416 2112751000380374829828457984 4225502000760760918655984384

Figure 3
A polytype MX for which the CRZS shows a twofold, two-color
symmetry rotor.



NMX
H ðPÞ ¼

P
p<q
pþq¼P
3jðp�qÞ

aðp; qÞ þ 1
2kðPÞfaðP=2;P=2Þ þATFðP=2Þg

ð6Þ

or p� q � �1 ðmod 3Þ (rhombohedral cases):

NMX
R ðPÞ ¼

P
p<q
pþq¼P
36 j ðp�qÞ

aðp; qÞ: ð7Þ

The above formulae simplify notably for prime P; thus,

equation (3) reduces to3

NMX
totalðPÞ ¼

2P�1 � 1

P
; P a prime � 3; ð8Þ

which turns out to coincide with ATF(P), the number of

CRZS having at least an anti-twofold axis, for period 2P, P

prime (Iglesias, 1981a, 2006a, Table 1). One can get, after some

manipulation,4

NMX
H ðPÞ ¼

2P�1 � 1

3P
; P a prime> 3: ð9Þ

In other words, for P a prime> 3 exactly one third5 of the

polytypes are hexagonal:

NMX
H ðPÞ ¼

NMX
totalðPÞ

3
; P a prime> 3: ð10Þ

It is tedious, but not difficult, to find that, for k> 0,

NMX
H ðPÞ ¼

2P � 2P=n

6P
; P ¼ nk, n a prime > 3

2P � 3	 2P=3 � 2

6P
; P ¼ 3k

8><
>:

ð11Þ

NMX
H ðPÞ ¼

2P�1 þ 2P=2

3P
;

NMX
totalðPÞ ¼

2P�1

P
;

9>=
>; P ¼ 2k; k � 2: ð12Þ

The values we find for the number of MX polytypes match

those published by McLarnan (1981) for ZnS polytypes, once

the different nature of the objects being counted is allowed

for:

NMX
Mc ðPÞ ¼ NMX

H ðPÞ þmðPÞNMX
R ðP=3Þ; ð13Þ

where mðPÞ ¼ 1ð0Þ, P � 0 ðmod 3Þ (otherwise), and the left-

hand side denotes values by McLarnan; the right-hand side

values are from Table 1 in this paper, where our values are

presented up to P = 100, distributed among the three possible

space groups. In that connection, we realize that those

Zhdanov symbols ascribed to space group P63=mmc when

they represent close packings of spheres (Iglesias, 2006a) now

have to be lumped together with those belonging to P63mc in

order to get the MX polytypes whose symmetry group is

P63mc. In other words, the polytypes belonging to space group

P63mc are all those whose CRZS exhibits an anti-twofold axis,

i.e. they belong to the two-color two-dimensional point groups

20 or 20mm0. Their number is ATF(P/2), defined in (5) above.

The number of polytypes MX belonging to space group P3m1

is obtained by difference. Finally, all rhombohedral MX

polytypes belong to space group R3m. Then,

NMX
P63mcðPÞ ¼ kðPÞATFðP=2Þ

NMX
P3m1ðPÞ ¼ NMX

H ðPÞ � kðPÞATFðP=2Þ

NMX
R3mðPÞ ¼ NMX

R ðPÞ

ð14Þ

with k(n) as defined in (4).

Closed formulae for ATF(p) for p = rk, k > 0, r an odd

prime, and for p = 2k, k > 0 can be found in Iglesias (2006a).

2.3. SiC polytypes

The polytypes of SiC were among the first to be noticed and

studied. The Encyclopaedia Britannica attributes its discovery

to Acheson (1893), although others claim the compound was

first prepared by Berzelius in 1824 (Jepps & Page, 1983). SiC

was found subsequently by Moissan (1905) in meteoritic

material and was widely employed thenceforth in sandpaper,

grinding wheels and cutting tools under the commercial name

of Carborundum1. Recently (materials advertised as 4H and

6H), it has been put to use as a high-temperature semi-

conductor and it stands among the candidates to take the

place of silicon in selected electronic applications, including

power transistors, microwave devices and others. Since the

energy gap varies between 2.4 and 3.3 eV depending on the

polytype, control of polytype formation is important for

application to semiconductors, especially blue-light-emitting

diodes (Kanaya et al., 1991). The material is also currently

marketed, under its mineral name moissanite, in the form of

(almost) colorless macroscopic single crystals for jewelry uses,

as a substitute for diamond, which it surpasses in every

desirable jewel property (brilliance, refractive index, disper-

sive power, toughness, temperature resistance) except in

hardness, in which it is second to diamond. Recently, SiC has

attracted the interest of cosmochemists because of its occur-

rence in chondritic meteorite material thought to predate the

solar system (presolar dust) and its polytypic composition has

become of interest since it is known to be sensitive to growth

conditions. Also, its spectral signature has apparently been

detected in the dust envelopes of carbon stars and supernovae

ejecta (Daulton et al., 2003, and references therein).

The possible polytypes of SiC coincide, in principle, with the

MX polytypes enumerated above. However, since the initial

studies of Zhdanov, an empirical rule was found that the SiC

polytypes, for unknown reasons, did not show a ‘1’ in their

Zhdanov symbol (see, for instance, Pandey & Krishna, 1983,

who list 55 known polytypes). Eventually, the polytype 2H

with the wurtzite structure (Zhdanov symbol 11) was found,

and the rational designation of the well known cubic variety

with the zincblende (sphalerite) structure is 10 (not10, which

would make it appear non-periodic), so it is clear that the rule
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shteyn & Ryzhik, 1965, p. 3, formula 0.152.1) was used in the derivation.
5 To prove that 3 divides 2P�1 � 1, for prime P, put 2k ¼ ð3� 1Þk and use the
binomial theorem.



of ‘exclusion of 1’ is, at best, an approximation; nevertheless, it

seems to be a useful one and, when attempts are made at

solving the structure of new SiC polytypes, only the possible

cases including no ‘ones’ in the Zhdanov symbol are tried. The

number of possible SiC polytypes under this ‘exclusion of 1’

assumption was calculated first by McLarnan (1981); a

previous attempt by Mogami et al. (1978) was criticized, and

the corresponding data superseded, by the results of

McLarnan. Shortly thereafter, Inoue (1982) published a table

of possible SiC polytypes, classified by the number of layers in

the period, which was obtained by exhaustive generation

under the ‘1-exclusion’ rule. Since the number of cases found

by Inoue did not match the numbers published by McLarnan,

we carried out an exhaustive generation anew, excluding the

sequences containing ‘1’ in their Zhdanov symbol, which is

presented in Table 2. The number of cases we get coincides

with McLarnan’s enumeration, once the oft-repeated trans-

formation [see equation (13)] is applied to the data, to reflect

the fact that McLarnan counted all cases as hexagonal, while

the counting scheme by which we (and Inoue) enumerate

Zhdanov symbols produces separate countings for hexagonal

and rhombohedral cases. A first look at Inoue’s data shows

that the numbers this author gets are, for sufficiently large P,

always less than the expected values. Thus, Inoue gets

NISiC
H ð11Þ ¼ 3, NISiC

R ð11Þ ¼ 5 (the I after the N stands for

Inoue); our Table 2 disagrees in that NSiC
R ð11Þ ¼ 6, the

difference coming from the fact that Inoue only lists 4322 out

of the pair (4322, 4223) of mirror-related CRZS. For P = 12,

Inoue gets the same number of hexagonal cases as we get (4),

but the number of rhombohedral cases is 7 in Inoue’s table

and 9 in ours. Again, the reason is that this author lists only

one member of each of the pairs (4332, 4233) and (5322, 5223).

Notice that, up to P = 12, and since NSiC
R ð4Þ ¼ 0 (see Table 2),

there is no apparent disagreement between the values in

Inoue’s Table IV and those in McLarnan’s Table 6, but there

are differences between Inoue’s values and ours, since we both

count the same kind of objects (Zhdanov symbols). Starting

from P = 13, the numbers from Inoue’s paper deviate from

McLarnan’s, and keep deviating from ours. Thus, Inoue lists 5

hexagonal cases where McLarnan expects 7, the number of

cases we list in Table 2. The reason is, once more, that Inoue

fails to list 6223 and 5233 while listing their reverses. Among

the rhombohedral cases, the disagreement is similar: Inoue

lists 11 cases where there are 13, as he fails to list 5224 and
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Table 2
Polytypes of SiC.

P P63mc P3m1 R3m

4 22
5 32
6 33 42
7 52 43
8 44 62, 53
9 63 72, 54, 3222

10 55 82, 3322 73, 64, 4222
11 74, 4232, 5222 92, 83, 65, 3332, 4322, 4223
12 66 93, 4224, 4323 (10)2, 84, 5232, 6222, 75, 4332, 4233, 5322, 5223
13 (11)2, 85, 4342, 6322, 6223, 5233, 5332 (10)3, 94, 5242, 7222, 6232, 76, 4333, 5323, 5422, 5224, 4234, 4432, 322222
14 77, 232232 (10)4, 6242, 8222, 7232; 4433, 5423, 5324, 5225,

332222
(12)2, (11)3; 95; 5342, 5243, 7322, 7223, 6332, 6233; 86, 4442, 5234, 5432, 6323,

6422, 6224, 5333, 323222, 422222
15 (12)3, 96, 5343, 7323, 6333, 5442, 5244, 7422,

7224, 6432, 6234, 222252, 423222, 422232
(13)2, (11)4, 6252, 9222, 8232, 7242; (10)5, 5352, 8322, 8233,7332, 7233, 6342,

6243; 87, 4443, 6423, 6324, 5433, 5334, 5235, 5325,4542, 6522, 6225, 333222,
432222, 234222, 232242, 323322, 323223

16 88, 323323,
422422

(14)2; (11)5, 6352, 6253, 9322, 9223, 8332, 8233,
7342, 7243, 5335, 6424, 5434, 6523, 6622, 5632,
333322, 432322, 232342, 234322, 422224

(13)3; (12)4, 7252; (10)222, 9232, 8242; (10)6, 6244, 8323, 7333, 6343, 5452, 8422,
8224, 7432, 7234, 6442, 423232, 222262, 325222, 424222, 523222, 97, 5443,
5344, 7423, 7324, 6433, 6334, 5542, 5245, 7522, 7225, 6532, 6235, 333232,
433222,432232, 234232, 233242, 332242, 334222, 532222, 235222, 232252

17 (13)4, 7262; (11)222; (10)232, 9242, 8252; (10)7,
5453, 5552, 6542, 6245, 8423, 8324, 7433, 7334,
6443, 6344, 8522, 8225, 7532, 7235, 433232,
334232, 533222, 532232, 333242, 434222,
235232, 233252, 332252, 335222, 632222,
236222, 232262, 424322, 424223

(15)2; (14)3; (12)5, 6362, 9332, 9233, 8342, 8243, 7352, 7253; (10)223; (10)322;
(11)6, 6353, 9323, 8333, 7343, 6452, 6254, 9422, 9224, 8432, 8234, 7442, 7244,
424232, 523232, 222272, 326222, 226232, 6236, 5543, 5345, 7523, 7325, 6533,
6335, 333332, 433322, 233342, 432332, 332342, 234332, 334322, 532322,
232352, 235322, 222254, 524222, 522242; 98, 5444, 7424, 6434, 5642, 5246,
7622, 7226, 6632, 222245, 224234, 422432, 522422, 322244, 223442, 244232,
442232, 343232, 32222222

18 99, 522522,
342342,
243243

(15)3; (12)6; (10)323, 9333, 8343, 7353, 6462,
7254, 7452; (10)422; (10)224, 9432, 9234, 8442,
8244, 228222, 623232, 525222, 426222, 422262,
327222, 227232, 524232, 523242, 5544, 6336,
7722, 7425, 7524, 6534, 6435, 7623, 6732,
532323, 342243, 442332, 222255, 443223,
433323, 432333, 324225, 224235, 223245,
423225, 322245, 223542, 443322, 442233,
33222222, 23222232

(16)2; (14)4, 8262; (12)222; (11)232; (10)242, 9252; (13)5, 7362, 7263; (11)322;
(11)223; (10)332; (10)233, 9342, 9243, 8352, 8253; (11)7, 6453, 6354, 9423,
9324, 8433, 8334, 7443, 7344, 6552, 6255, 9522, 9225, 8532, 8235, 7542, 7245,
434232, 333252, 232272, 533232, 335232, 534222, 435222, 532242, 235242,
234252, 432252, 633222, 336222, 632232, 236232, 233262, 332262, 732222,
237222, 424332, 424233; (10)8, 8424, 7434, 6444, 5652, 5553, 6345, 6543, 8622,
8226, 7632, 7236, 6642, 6246, 7335, 7533, 8523, 8325, 334332, 236322, 423432,
242262, 444222, 424323, 433332, 333342, 434322, 434223, 533322, 233352,
532332, 332352, 235332, 335322, 632322, 232362, 622224, 222264, 322254,
345222, 323244, 423234, 325422, 523224, 225234, 522432, 424422, 424224,
32322222, 22222242



4234. For P = 14, Inoue fails to find 5324 among the hexagonal

cases, while listing the remaining 10 sequences; and lists 14

rhombohedral sequences, missing 5243, 7223, 6233, 5234 and

6224, although the corresponding reversed sequences are

listed. For P = 15, Inoue’s table misses 4 hexagonal and 9

rhombohedral cases; for P = 16, 6 hexagonal and 14 rhom-

bohedral sequences are not listed; for P = 17, 24 hexagonal

cases are listed out of 36, and only 45 rhombohedral cases out

of the possible 69.

It appears that the main reason for Inoue missing so many

cases is always this author’s failure to include the reversed

sequences of those listed not having a mirror line in their

CRZS, but it would be tedious and error-prone to check this

exhaustively in Table IV of Inoue’s paper. It is also difficult to

locate the origin of these errors in the explanations offered in

justification of Inoue’s generation algorithm, but the only

rational explanation of so large a deviation from the correct

results must be some intrinsic flaw in the design of that

algorithm.

Perhaps we should mention at this point the work of Bojin

& Hoffmann (2003a,b). They deal with layered polymorphs of

so-called REME phases. These are complex phases where

RE = rare earth, actinide, or metals from groups 1 to 4 in the

Periodic Table (alkali and alkaline-earths and the Sc and Ti

groups), M = transition metal from groups 8 to 12, and E =

elements from groups 13–15 (groups of B, C and N). Their two

consecutive papers constitute a long (60-odd printed pages)

exposition of stacking principles among these phases, of which

about 1000 are known. The second paper is of a predictive

nature, and the authors try to forecast possible polymorphs

with different stacking sequences. Since one of their unit

layers is a ‘diamond layer’, many of the stackings they describe

must coincide with those tabulated by Inoue and in this paper.

However, for the structures they deal with, there appear to be

restriction rules limiting the initial theoretical possibilities, so

it turns out to be a difficult task to compare their complex

tabulated results and those of SiC, or of the general MX case.

Nevertheless, one must take exception to the comment they

print on page 1706 of the second paper: ‘It seems that studies

on SiC are typically concerned with describing the structures

experimentally observed; there appears to be little consid-

eration of the full range of potential structures’. They may

have a point, but they refer with little or no comment to

McLarnan’s paper, which deals precisely with potential

structures, which this author flawlessly enumerated, and they

ignore the work of Inoue, which is perhaps incomplete, but not

wrong, in those SiC polytype structures this author lists.

2.4. Diamond polytypes

Since the normal cubic structure of diamond is a tetrahedral

linkage entirely similar to that of cubic SiC (sphalerite-type

structure), it is only natural to expect that polytypes of a

geometrical nature akin to that of the SiC polytypes might be

found in pure carbon crystals. We shall refer to them, albeit

perpetrating abuse of language, as ‘diamond polytypes’, since

‘carbon polytypes’ may be taken to carry the connotation of

graphite having a part in this business; however, we must be

aware of the fact that ‘diamond’ is a mineral name referring to

pure carbon in a particular crystal structure.

In addition to diamond sensu stricto several other polytypes

of tetrahedral carbon are known. The two-layer polytype was

described as a mineral by Frondel & Marvin (1967) who found

it in meteoritic materials and christened it lonsdaleite. Its

structure can be described as a wurtzite-type structure, with all

atoms of the same species. The so-called 6H polytype

(Frenklach et al., 1989; Spears et al., 1990), obtained by

nucleation in low-pressure mixtures of dichloromethane and

oxygen passing through a high-power microwave generator,

appears to be well characterized as 33 in Zhdanov notation

(space group P63=mmc), although it is not altogether clear

how the other possibility for a 6H structure, 2112 (space group

P�66m2), was excluded. The remaining polytypes frequently

referred to in the literature, 4H, 8H, 10H, 15R and 21R (see,

for instance, Ownby et al., 1992), appear to be postulated

structures, whose diffraction and spectroscopic signatures are

computed in the hope of recognizing the real thing whenever

it comes across. Certain reports claim to have identified some

of them in meteoritic material (Phelps, 1999).

There is an important difference between SiC polytypes and

diamond polytypes: since the symmetry of a C—C dumb-bell

is 1/mmm, rather than 1mm, the symmetry of the C—Si

dumb-bell, the space-group symmetry of the diamond poly-

types is expected to be higher than that of the equivalent SiC

polytypes, although they must still be restricted to the super-

groups of P3m1 (Iglesias, 2006a). In particular, they can be

centrosymmetric, since the C—C dumb-bell has an inversion

center midway between the two C atoms. In fact, with the sole

exception of the normal cubic diamond structure (Zhdanov

symbol 10), which belongs to space group Fd�33m, reflecting the

fact that the point-symmetry group of the C—C dumb-bell is

intermediate between the full symmetry group of the sphere

(10 stacking belongs to Fm�33m) and that of the C—Si dumb-

bell (10 stacking belongs to F �443m), every other diamond

polytype must belong to one of the seven space groups

permissible for stackings of equal spheres: P3m1, P�33m1,

P�66m2, P63mc, P63=mmc, R3m and R�33m. This has been pointed

out by Phelps et al. (1993). When the stacking has S-type

centers of symmetry, these always lie at the central point of

C—C dumb-bells, which take the place of the spheres of a

sphere packing; O-type inversion centers are midway between

C atoms belonging to different vertical (normal to the

hexagonal layers being packed) dumb-bells. One could say

that O-type centers are at the center of oblique C—C dumb-

bells (inclined 19�280 to the plane of the layers), since every C

atom is covalently bonded to another C atom directly on top

of it (the two make one vertical dumb-bell) and to three other

atoms, lying on the layer below the given atom, and belonging

to different vertical dumb-bells. The drawing exercise Phelps

et al. (1993) embark upon, apparently to locate the inversion

centers for known or postulated structures of diamond poly-

types, can be entirely dispensed with once the Zhdanov

symbol is known (or postulated), by strict application of

Zhdanov’s rules, after taking a look at the two-color symmetry
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point group of the cyclotomic representation (Iglesias, 2006a).

Thus, the six 8H(a–f) postulated polytypes drawn in Fig. 4 of

Phelps et al. (1993) have Zhdanov symbols 44, 71, 221111,

211211, 3212 and 3113; and, from the CRZS of these, one gets

by inspection the following space groups: P63=mmc, P�33m1,

P�66m2, P63=mmc, P�33m1 and P�66m2. Since half the period is

even, both instances of P63=mmc will have S-type inversion

centers; and, since both 71 and 3212 have TT-type mirror lines

(Iglesias, 2006a), the two cases belonging to P�33m1 will have

exclusively O-type inversion centers.

3. Polytypes MX2

3.1. Introductory remarks

This family includes CdI2, CdBr2, PbI2, SnS2, SnSe2, TaS2

and TaSe2 (Trigunayat, 1991). According to Trigunayat, about

200 polytype structures are known for CdI2; but the reference

he gives (Krishna & Verma, 1966) only mentions 64, and the

book by the same authors (Verma & Krishna, 1966) only

considers the structure to be settled for 14 out of 68 polytypes.

However, in a later paper (Wahab & Trigunayat, 1980), which

is not referred to in Trigunayat (1991), about 90 CdI2 poly-

types are listed, and their stacking sequences reported. The

number of known polytypes for the other listed compositions

is much smaller.

The MX2 polytypes are built by close-packed frameworks of

large X atoms (iodine in the prototype CdI2 family) with one

half of the octahedral voids filled with M atoms, in such a way

that the M atoms fill complete layers of octahedral voids

alternating with empty octahedral layers. A necessary conse-

quence of this is that the number of layers within a full period

must be an even integer. For an alternative description of the

structure, one can start with ‘molecular’ sandwiches of

composition MX2, made of two close-packed layers of X

atoms with all the octahedral holes filled with M atoms, and

stack them in a pile in a close-packed way. Since the centers of

the octahedral holes of a sphere packing themselves constitute

a hexagonal layer, a representation of the polytype can be

given as a sequence of sandwiches (A�B)(C�B)(C�A) . . . etc.,

where the Greek letters represent the M atoms, and an �, �, �
position corresponds with the usual A, B, C positions. If we

agree on the convention that the first interlayer of a symbol is

always filled, then we can entirely dispense with the Greek

letters, and the polytype can be represented by the Zhdanov

symbol of the stacked X atoms. If we represent the Zhdanov

symbol by a CRZS, each dot symbolizes (see above) the

interlayer between two X-atom layers; again, we paint black

those dots representing the passage . . . A ! B ! C ! A

. . . , whereas white-painted dots represent . . . A! C! B!

A . . . ; we take the clockwise motion on the CRZS to repre-

sent the stacking of layers in the positive direction of the c axis.

Since we have eliminated the Greek letters from the symbol

but need to start the symbol at a metal-filled layer, we need an

additional mark to flag those sandwiches containing M atoms.

We use asterisks for that purpose (see, for example, Fig. 4) and

only alternate dots can be thus marked.

We know that the Zhdanov symbol of a stack of close-

packed layers of equal spheres can be cycled through its

components, in any sense of rotation on the circle, and we

always get different representations of the same stacking; for

instance, Zhdanov symbols 5317, 3175, 1753, 7531, 7135, 5713,

3571 and 1357 all represent the same sphere stacking. The first

four amount to simple changes of origin layer in descriptions

of the structure reporting the stacking as we move in the

positive direction of the axis of stacking; the remaining four

are the reversal of the first four. In the CRZS, the second set of

representations is supposed to be described counterclockwise,

and the colors black and white are exchanged. Notice that

giving the order of stacking as we move in the negative

direction of the piling axis requires color reversal if the layers

have to keep their A, B, C description, so by moving coun-

terclockwise we keep our convention, but we have to

exchange colors if we want to describe the same structure. The

situation is not so simple in the MX2 polytypes, because the

fact that only alternating interlayers are filled with M atoms

reduces the number of equivalent representations. It can be

seen that two symbols related by cyclical permutation do

represent the same structure if the two Zhdanov symbols

differ by an even shift, i.e. the origins are shifted by an even

number of layers, since the new origin satisfies the above-

mentioned convention of always starting with a filled inter-

layer. This means that polytype 5317 is the same as 1753 (see

Fig. 4a), but the reversed symbol 7135 represents in general a

different structure, which happens to be the same as that

represented by 3571, since both Zhdanov symbols differ by an

even shift. In Fig. 4(a), we can see that the polytype repre-

sented can be described by the Zhdanov symbol 5317 (starting

clockwise at a), or 1753 (starting clockwise at b). But the same

polytype is obtained if we describe it by 1357 (starting coun-

terclockwise at b) or 5713 (starting counterclockwise at c). In

these last two cases, the colors had to be exchanged, but we

can train ourselves to do these operations without actually

changing colors, which saves us the work of repeating the

drawing. In other words, 5317, 1753, 5713 and 1357 all

represent exactly the same structure. The last two can be seen

to derive from the first two by reversal of the Zhdanov symbol,
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Figure 4
Relations among CRZS for MX2 polytypes. (a) A unique polytype is
represented by the sequences starting: clockwise at a, 5317; clockwise at
b, 1753; counterclockwise at b, 1357, and at c, 5713. (b) A unique polytype
is represented by the sequences starting: counterclockwise at d, 7135, and
f, 3571, and clockwise at e, 3175, and at g, 7531.



followed by an odd shift (Jain & Trigunayat, 1977). Reversal

followed by an odd shift always produces a (in general)

different description of the same structure (see Appendix A

for the commuting properties of the shift and reverse opera-

tors). Assume in Fig. 4(a) that we want to reverse the

description 5317; we exchange colors (but omit) and start

rotating counterclockwise in Fig. 4(a) at point a0: it is clear that

we need to advance an odd number of layers to point b to

reach an admissible starting position.

In Fig. 4(b), we can see the same configuration of black and

white dots as in Fig. 4(a). The asterisks are now placed in such

a way that the reversal of 5317 [clockwise in Fig. 4(a) from a],

which is 7135 [counterclockwise from d in Fig. 4(b)] now has a

meaning as an admissible symbol for a polytype; it is clear that

it will be a polytype different from that depicted in Fig. 4(a). In

Fig. 4(b), it is obvious that this second polytype could be

equally well represented by the symbols 3571 (counter-

clockwise at f) or 3175 (clockwise at e) or 7531 (clockwise at

g). For this second polytype, we have obtained, therefore, the

four different representations 7135, 3571, 3175 and 7531.

Again, the first two (and the last pair) are related by an even

shift, while the first and third are related by reversal followed

by an odd shift, and the same relation holds for the second and

the fourth.

Hence, given any Zhdanov symbol Z representing a poly-

type, we can represent the same polytype by ES(Z), or by

OS(Rev(Z)), where ES/OS represents an operator that shifts

the origin by an even/odd number of layers, and Rev is an

operator that literally reverses the symbol. However, Z and

Rev(Z) represent, in general, two different polytypes. In this

connection we prove the following.

Proposition 1. Given any Zhdanov symbol of an MX2 poly-

type, the operations of reversing and shifting by any number

of layers will produce symbols representing no more than two

different polytypes in all.

Proof. Let Zhdanov symbol Z represent polytype Poly1

Z ¼ r1r2r3 . . . rk�1rkrkþ1 . . . r2n�1r2n 
� Poly1; ð15Þ

where the symbol 
� will be taken to mean ‘represents’. We

know that

RevðZÞ ¼ r2nr2n�1 . . . rkþ1rkrk�1 . . . r3r2r1 
� Poly2 ð16Þ

and that, in general, Poly1 6¼ Poly2. Now, since obviously

RevðRevðZÞÞ ¼ Z ð17Þ

Poly3 
� OSðZÞ ¼ OSðRevðRevðZÞÞÞ ¼ RevðZÞ 
� Poly2:

ð18Þ

The conclusion is that, for any given Zhdanov symbol, reversal

and shifting that symbol by any amount can produce repre-

sentations for, at most, two distinct polytypes: ES(Z) and

OS(Rev(Z)) produce several distinct representations all

equivalent to Z, and OS(Z) and Rev(Z), represent a new

polytype, Rev(Z), which we call the ‘conjugate’ of the initial

one, Z. We also say that the polytypes represented by Z and

Rev(Z) are a pair of conjugates. When both conjugates are

congruent, the conjugate pair is degenerate.

3.2. Effect of the symmetry of the CRZS

We now investigate the consequences of having some

symmetry in the CRZS. The first thing to notice is that the

period of repetition being necessarily even implies (Iglesias,

2006a) that there can only be BB-type and TT-type mirror

lines. We recall that a BB-type mirror line goes through the

midpoint of the arc between dots at its two ends, while a TT-

type mirror line intercepts a dot at both its extremities

(Iglesias, 2006a). In addition to these, we can have anti-mirror

line, anti-twofold rotor and combinations thereof: 20mm0,

where m = BB (TT) for P/2 even (P/2 odd). We now prove the

following.

Proposition 2. Whenever the Zhdanov symbol of an MX2

polytype has a BB-type mirror line in its CRZS, the polytype

thus represented and that represented by the reversed symbol

are one and the same.

Proof. We assume that the CRZS has a BB-type mirror line of

symmetry and prove that the Zhdanov symbols Z and Rev(Z)

represent the same polytype. Since a BB line intercepts no dot,

it is clear that between a given dot and its symmetric mate by

the operation of the BB mirror line there must be an even

number of dots. This guarantees that in every pair of mirror-

related mates only one can be marked with an asterisk.

Consider now, in Fig. 5(a), the Zhdanov symbol Z starting

clockwise at position a. The reversed sequence Rev(Z) would

start at b, running counterclockwise. However, the sequence

starting at b is not a valid one since it lacks an asterisk,

although the sequence starting clockwise at c, the mate of

point b by the operation of the BB mirror line, is a valid one,

since there is necessarily an asterisk at that dot. Moreover, it is

identical with that starting counterclockwise at b. Hence the
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Figure 5
(a) CRZS of an MX2 polytype possessing a BB-type mirror line. The
sequence starting clockwise at c coincides with the reverse of that starting
clockwise at a. (b) CRZS of an MX2 having an anti-twofold rotor. The
sequence starting at c counterclockwise is identical to that starting at b in
the same sense of rotation and will be a valid sequence if P/2 is odd.



Zhdanov symbol Z and the reversed symbol Rev(Z) represent

exactly the same polytype structure. (q.e.d.)

The TT-type mirror line does not have a similar property.

To prove that the presence of a TT-type mirror line does not

make equivalent Z and Rev(Z), it suffices to give a counter-

example, such as that shown in Fig. 6, where it can be seen that

2321 
� 3212 represents a different polytype to that repre-

sented by 1232 = Rev(2321)
� 2123. The significance of the

TT-type mirror line will be appreciated below.

Proposition 3. If the CRZS has a 20 rotation axis, i.e. it is

invariant under rotation of 180� followed by color exchange,

then the MX2 polytype represented by any valid Zhdanov

symbol and that represented by the reversed symbol will be

the same, provided that P/2 is odd.

Proof. We refer to Fig. 5(b) and suppose that P/2 is odd. The

sequence Z starting clockwise at a has as its reverse that

sequence starting counterclockwise at b, but this is not a valid

starting point for a Zhdanov symbol; however, the two-color

twofold rotation ensures that an identical sequence, Rev(Z),

will start counterclockwise at c and, since P/2 is odd, it will be a

valid starting point for the Zhdanov symbol of a polytype

MX2. But this is the reverse of that sequence going clockwise

from d, which coincides with Z. Hence, Z 
� RevðZÞ. Notice

that this would be impossible if P/2 happens to be even, in

which case Z and Rev(Z) represent different polytypes.

Proposition 4. If the CRZS of an MX2 polytype has a two-

color mirror line, i.e. it is invariant under reflection on a line

followed by color exchange, then the polytype represented by

any Zhdanov symbol and that represented by the reversed

symbol will coincide.

Proof. The argument is almost identical with that given for the

BB-type mirror line above, and will be easily reconstructed by

the interested reader. Both BB-line and anti-mirror line pass

between dots and have the same effect as far as asterisk marks

are concerned; they differ in that the anti-mirror switches

colors and the BB-line does not.

The converse to Propositions 2, 3 and 4 can be written as the

following proposition.

Proposition 5. If Z and Rev(Z) represent the same MX2

polytype, then the CRZS has at least one of the following: a

BB-type mirror line, an anti-mirror line or, if P/2 is odd, an

anti-twofold rotor.

Proof. We refer again to Fig. 5(a) and forget momentarily

about the drawn BB line. We assume that the sequence

starting clockwise at a and that running counterclockwise from

b represent the same structure. Since b is not a valid starting

point, there must be a valid starting point differing from a by

an even number of layers from which the sequence is the same

as that running counterclockwise from b. Assume the point is

c, a dot with asterisk, for which we ignore both its color and

the adequate sense of rotation. Let the color be white and the

sense clockwise: this implies a BB-type line as drawn. We now

suppose the dot is black and the sense is clockwise: between b

and c there must be an anti-mirror line. We now assume the

sense to be counterclockwise. First we assume the color of c is

white: but this is impossible, because then the CRZS would

contain subperiods, and we are assuming that these have been

excluded by our counting scheme [and are reckoned among

the set of period P/d, d|(p, q)]. Now we assume the color is

black; the only way to have two equal sequences in the same

sense of rotation, one starting white and the other black is

having the operation of a 20 rotation in the CRZS, and having c

exactly opposite to b. Moreover, one of the sequences lacks an

asterisk and the other must have one, and this requires P/2 to

be odd. (q.e.d.)

3.3. Enumeration of MX2 polytypes

Propositions 1–5 give us working rules to count polytypes

by counting Zhdanov symbols. For every distribution of p

black dots and q white dots in the circle, there is a pair of

conjugate polytypes, which is the same conjugate pair if we

exchange the colors (i.e. if we consider the arrangements of q

black dots and p white dots as well); then the number of

different polytypes would be
P

p�qaðp; qÞ, with a(p, q) as

given above, but we have to correct this value by properly

taking care of degenerate pairs of conjugates. It is convenient

to distinguish two cases.

(a) For p 6¼ q, we recall that a(p, q) counts separately the

two members of each pair of mirror-related CRZS, and counts

singly those arrangements having a mirror line. However, we

have seen (Proposition 2) that only BB-type mirror lines

produce degenerate pairs of conjugates, while TT mirror lines
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Figure 6
The presence of a TT-type mirror line in the CRZS does not make the
sequence 2321 represent the same polytype as its reverse, 1232.



do not introduce any degeneracy. We therefore must correct

a(p, q) by increasing its value by tt(p, q), the number of

configurations having a TT-type mirror line, where

ttðp; qÞ ¼ bðp; qÞ � bbðp; qÞ; b(p, q) is the number of

arrangements showing at least a mirror line of any kind

(Iglesias, 1979, 1981a, 2006a); and bb(p, q) is the number of

arrangements whose CRZS contains at least a BB line

(Iglesias, 2006a).

There is an additional difficulty derived from the fact that

only an even period P can occur among these polytypes: half-

order subperiods having an odd sum must be added in,

because such subperiods cannot represent a polytype of half

periodicity, but have been nevertheless subtracted in the

computation of a(p, q). Thus a Zhdanov symbol such as 5252

should be considered as having P = 7 if it represents a stacking

of spheres, and the proper symbol would be 52. But if we are

dealing with MX2 polytypes, 52 is not a valid symbol, but 5252

is, and properly belongs in the set for which P = 14. This means

that a(p, q) should be corrected by adding these cases, which in

principle would be counted by a(p/2, q/2), for (p + q)/2 odd.

But some of these cyclic configurations could have mirror lines

themselves, hence the real correction term should be

[a(p/2, q/2) + b(p/2, q/2)]/2. Since these mirror lines are

necessarily of the BT type (Iglesias, 2006a) because the period

is odd, and these give, upon repetition, some BB-type lines

(see Fig. 2 in Iglesias, 2006a), no more corrections are needed.

Finally,

NMX2 ðp; qÞ ¼ cðp; qÞ þ 1
2lðp; qÞdðp=2; q=2Þ; ð19Þ

where

cðp; qÞ ¼ aðp; qÞ þ ttðp; qÞ

dðp; qÞ ¼ aðp; qÞ þ btðp; qÞ

�
ð20Þ

and

lðp; qÞ ¼
1 p even and 46 j ðpþ qÞ

0 otherwise

�
ð21Þ

and btðp; qÞ ¼ bðp; qÞð0Þ; pþ q odd ðotherwiseÞ:

A definition of bðp; qÞ is in equation (32).

(b) For p = q, the number a(p, p) contains pairs of color

conjugates, representing a unique polytype; dividing by 2

would take care of this redundancy. But we must remember

that those configurations having a mirror or anti-mirror line

appear only once in the counting, while, out of these, those for

which the mirror line is of the TT type produce two different

polytypes; also, we have to correct for the fact that those

having a two-color twofold rotor produce also two different

polytypes if p is even, and only one if p is odd (Proposition 3).

However, it can be seen that the correction (half-order

subperiod of odd sum) introduced in equation (19) is not

needed here; to see that, we prove the following.

Proposition 6. When p = q there can be no Zhdanov symbol

for an MX2 polytype having a one-half subperiod of odd

sum.

Proof. Let

Z ¼ r1r2r3 . . . rn�1rnrnþ1 . . . r2n�1r2n; n even; ð22Þ

where
P

j odd rj ¼
P

k even rk, i.e. p = q. [We need n even in (22)

in order for the hypothetical subperiod Z0 ¼ r1r2r3 . . . rn�1rn to

be a legitimate MX2 Zhdanov symbol by itself.]

Since ri ¼ riþn, i ¼ 1 to n,

p ¼
P2n�1

i¼1
i odd

ri ¼ ðr1 þ rnþ1Þ þ ðr3 þ rnþ3Þ þ . . .þ ðrn�1 þ r2n�1Þ

¼ 2
Pn�1

i¼1
i odd

ri ð23Þ

and, similarly,

q ¼
P2n

j¼2
j even

rj ¼ ðr2 þ rnþ2Þ þ ðr4 þ rnþ4Þ þ . . .þ ðrn þ r2nÞ

¼ 2
Pn

j¼2
j even

rj; ð24Þ

which would require both p and q to be even; and moreover,

since p = q,

Pn�1

i¼1
i odd

ri ¼
Pn

j¼2
j even

rj: ð25Þ

Hence Z0 cannot have an odd sum. (q. e. d.)

Taking all this into account, we can write

NMX2ðp; pÞ ¼
1
2faðp; pÞ þ ttðp; pÞ þATFðpÞg; p even
1
2faðp; pÞ þ bðp; pÞg; p odd

� �
;

ð26Þ

where use has been made of the fact that bðp; pÞ ¼ ttðp; pÞ if p

is odd (Iglesias, 2006a).

The two equations (26) can be combined with (19) to give

the total number of hexagonal polytypes MX2 for period P:

N
MX2
H ðPÞ ¼

P
p<q
pþq¼P
3jðp�qÞ

cðp; qÞ þ 1
2lðp; qÞdðp=2; q=2Þ

þ 1
2�

p
qfcðp; qÞ þ kðpÞATFðpÞg; ð27Þ

where k (n) = 1 (0) for n even (odd) is defined in (4), �p
q is the

Kronecker delta,6 and c(p, q), d(p, q) and l(p, q) have the

meanings defined in (20) and (21). The rhombohedral cases

would be counted by a similar expression:

N
MX2
R ðPÞ ¼

P
p<q
pþq¼P
36 j ðp�qÞ

cðp; qÞ þ 1
2lðp; qÞdðp=2; q=2Þ: ð28Þ

These values are presented up to P = 100 in Table 3. Our

values agree with those published by McLarnan (1981) to P =

50, with the equivalence
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N
MX2
Mc ðPÞ ¼ N

MX2
H ðPÞ þmðPÞN

MX2
R ðP=3Þ; ð29Þ

where mðPÞ ¼ 1 ð0Þ, P � 0 ðmod 3Þ ðotherwiseÞ; on the left-

hand side of the equality are McLarnan’s values, and on the

right-hand side are ours, with subindices indicating hexagonal

and rhombohedral cases. There is only one discrepancy

between our results and McLarnan’s: for P = 6 this author

reports three polytypes, while we only get two hexagonal

polytypes, 33 (P�33m1, see below) and 2211 (P3m1), Table 3. We

also get 0 rhombohedral polytypes for P = 2, so the two values

cannot be reconciled. Given the by now customary agreement

between McLarnan’s counting and ours, we have to surmise

that there is a misprint in McLarnan’s Table 5.

3.4. Distribution of polytypes MX2 among the permissible
space groups

A consequence of the structure of these polytypes is that

there can be no centers of symmetry located at the centers of

the X atoms, since such centers would relate empty to

M-occupied octahedral positions. Since we are using essen-

tially the Zhdanov symbol of the X-atom substructure to

describe the structures of these polytypes, this means that BB-
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Table 3
Distribution of MX2 polytypes among the possible space groups.

P P63mc P�33m1 P3m1 R�33m R3m Total hexagonal Total rhombohedral

2 0 1 0 0 0 1 0

4 1 0 0 2 0 1 2

6 0 1 1 5 1 2 6

8 2 4 2 8 6 8 14

10 0 10 12 20 24 22 44

12 5 16 45 38 93 66 131

14 0 42 174 84 348 216 432

16 16 80 632 160 1280 728 1440

18 0 163 2344 341 4684 2507 5025

20 51 330 8539 660 17129 8920 17789

22 0 682 31434 1364 62868 32116 64232

24 170 1332 115724 2688 231616 117226 234304

26 0 2730 428820 5460 857640 431550 863100

28 585 5418 1594731 10836 3190047 1600734 3200883

30 0 10890 5959770 21840 11919544 5970660 11941384

32 2048 21760 22357376 43520 44716800 22381184 44760320

34 0 43690 84193200 87380 168386400 84236890 168473780

36 7280 87154 318097239 174422 636201813 318191673 636376235

38 0 174762 1205517474 349524 2411034948 1205692236 2411384472

40 26214 349180 4581106382 698360 9162238978 4581481776 9162937338

42 0 698922 17452215864 1398096 34904431992 17452914786 34905830088

44 95325 1397418 66636306091 2794836 133272707507 66637798834 133275502343

46 0 2796202 254957819934 5592404 509915639868 254960616136 509921232272

48 349520 5590800 977340640040 11182080 1954681630720 977346580360 1954692812800

50 0 11184800 3752994097072 22369600 7505988194144 3753005281872 7506010563744

52 1290555 22366890 14434602146475 44733780 28869205583505 14434625803920 28869250317285

54 0 44738731 55599973027843 89478485 111199946060029 55600017766574 111200035538514

56 4793490 89473020 214457077180710 178946040 428914159154910 214457171447220 428914338100950

58 0 178956970 828248117854020 357913940 1656496235708040 828248296810990 1656496593621980

60 17895679 357902010 3202559544128818 715806000 6405119106169784 3202559919926507 6405119821975784

62 0 715827882 12397005067966134 1431655764 24794010135932268 12397005783794016 24794011567588032

64 67108864 1431633920 48038395264729088 2863267840 96076790596567040 48038396763471872 96076793459834880

66 0 2863309482 186330746787601884 5726623056 372661493575265272 186330749650911366 372661499301888328

68 252645135 5726579370 723401725349046955 11453158740 1446803450950739045 723401731328271460 1446803462403897785

70 0 11453246070 2810932424552927646 22906492140 5621864849105855292 2810932436006173716 5621864872012347432

72 954437120 22906400832 10931403883441977824 45812809728 21862807767838621696 10931403907302815776 21862807813651431424

74 0 45812984490 42543842165108329500 91625968980 85087684330216659000 42543842210921313990 85087684421842627980

76 3616814565 91625794218 165697069526149409451 183251588436 331394139055915633467 165697069621392018234 331394139239167221903

78 0 183251929770 645793706967470386290 366503875920 1291587413934941624760 645793707150722316060 1291587414301445500680

80 13743895344 366503526320 2518595457338063087112 733007052640 5037190914689870069568 2518595457718310508776 5037190915422877122208

82 0 733007751850 9828665199752432503800 1466015503700 19657330399504865007600 9828665200485440255650 19657330400970880511300

84 52357696365 1466014788378 38378597447315551740816 2932029609264 76757194894683464357208 38378597448833924225559 76757194897615493966472

86 0 2932031007402 149944287702674037173034 5864062014804 299888575405348074346068 149944287705606068180436 299888575411212136360872

88 199911205050 5864060616700 586145851931300356018550 11728121233400 1172291703862800623242150 586145851937364327840300 1172291703874528744475550

90 0 11728123996680 2292481554226321626293580 23456248058880 4584963108452643264484864 2292481554238049750290260 4584963108476099512543744

92 764877654105 23456245263018 8970579994809358153853611 46912490526036 17941159989619481185361327 8970579994833579276770734 17941159989666393675887363

94 0 46912496118442 35118866362682367153334374 93824992236884 70237732725364734306668748 35118866362729279649452816 70237732725458559298905632

96 2932031006720 93824986579200 137548893253882274452461440 187649973288960 275097786507767480980602880 137548893253979031470047360 275097786507955130953891840

98 0 187649984473728 538967091933677179045477056 375299968947456 1077934183867354358090954112 538967091933864829029950784 1077934183867729658059901568

100 11258999068416 375299957762400 2112751000380187179849576784 750599915524800 4225502000760385618698221984 2112751000380573738806407600 4225502000761136218613746784



type symmetry lines in the CRZS do not (as they did for

sphere stackings) imply that the polytype has an S center,

which we know is impossible. This is reflected in the fact that

the set of asterisks does not obey the symmetry operation of

the BB line (Proposition 2, Fig. 5). Moreover, there can be no

mirror planes normal to the stacking axis, since there is no way

of having such mirrors passing through octahedral holes (two

successive X layers cannot be so related) and these mirror

planes cannot pass through X-atom layers that systematically

separate empty and filled octahedral holes. Hence, among the

possible space groups of a stacking of equal spheres (Iglesias,

2006a), we have to strike out P63=mmc and P�66m2; since P � 2,

no cubic space group is possible either. Hence we are limited

to P63mc, P3m1, P�33m1, R3m and R�33m.

We are still at a loss to recognize in the Zhdanov symbol a

centrosymmetric polytype. We deal with this in the following

Proposition.

Proposition 7. The CRZS of an MX2 polytype has a TT-type

mirror line of symmetry if and only if the polytype is centro-

symmetric.

Proof. (A) Assume first that the polytype has inversion centers

placed at a subset of the octahedral centers of the X-atom

stacking. This necessarily entails these X atoms being

distributed centrosymmetrically, and this ‘shows up in the

Zhdanov symbol’ (Patterson & Kasper, 1959) in the form of a

TT mirror line in its CRZS. The asterisks conform to this

symmetry (see Fig. 6).

(B) Assume now that a TT line of symmetry exists in the

CRZS. We have proved (Iglesias, 2006b) that this implies that

the arrangement of the X atoms is centrosymmetric, with �11ðOÞ
inversion centers.

(a) Let P/2 be even. Since the CRZS has a TT line of

symmetry, the number of dots of any color at each side of the

TT line is (P � 2)/2, an odd number (Fig. 7a). We place an M

layer at the interlayer represented by the central dot of a run

of n dots of the same color on which the TT line is incident (i.e.

we place an asterisk on this dot). Since alternate interlayers

must be M-filled, the dot at the opposite end of the TT line will

carry an asterisk as well. If (n � 1)/2 is even (which is the case

in Fig. 7a), each end of the run of n dots can be the starting

point of a valid Zhdanov symbol. If (n � 1)/2 is odd, the start

of a valid Zhdanov symbol will be at the beginning of the next

run of dots of opposite color. In both cases, the configuration

of asterisks satisfies the mirror line, i.e. the center of symmetry

relates M-filled sandwiches with M-filled sandwiches. It

remains to be seen that these M-layers are in the correct

orientation. Suppose, for instance, that the uppermost black

dot in Fig. 7(a) represents a (A�B) sandwich, and consider any

pair of asterisk-bearing dots of any color, symmetrically

placed with respect to the mirror line. We have proved

(Iglesias, 2006b) that if the dot on the left represents, when

described clockwise, sandwiches of the type (A�B), (B�A),

(A�C), (C�A), (B�C) or (C�B), the corresponding sandwich

on the right-hand side will be, respectively, of the type (A�B),

(B�A), (C�B), (B�C), (C�A) or (A�C); hence the M atoms

are centrosymmetrically distributed as well, since the rule

� Ð �; �Ð � is satisfied throughout. It is easy to see that we

will get the same result (i.e. asterisks symmetrically ordered

with respect to the TT line and M layers correctly oriented) if

we place the M layer not at the central dot but at the dot next

to it, and that the dot at the other end of the TT line should be

empty (asterisk-free). It should be clear that the two config-

urations represent different polytypes, but both are centro-

symmetric.

(b) Let P/2 be odd. We place an asterisk at the central dot of

a run of n dots of the same color, as in (a) above. Now the dot

at the opposite end of the TT line will be asterisk-free. Again,

if (n � 1)/2 is even, the n run will be a valid start for a

Zhdanov symbol and, if (n � 1)/2 is odd (which happens in

Fig. 7b), the next run of dots at any side will be a valid

Zhdanov symbol. The asterisks conform, in any case, with the

TT mirror line, and it can be verified that the M layers will

have the correct orientation as well. The same result is

obtained if the initial asterisk is placed at the dot next to the

central one in the initial n run.

(q.e.d.)

Incidentally, we have proved for those CRZS having a TT

line the following.

(a) If P/2 is even, both centers of inversion in a unit cell are

filled with M atoms, or else both are empty. If a given Zhdanov

symbol corresponds to a polytype in which both centers

correspond to M-filled positions, the conjugate polytype

(represented, for instance, by the reversed Zhdanov symbol)

will have both inversion centers at empty octahedral holes.

(b) If P/2 is odd, half the inversion centers are at M-filled

octahedra and the other half are at empty octahedra; the same

occurs with the conjugate polytype.

For instance, polytype 512121 has both sets of inversion

centers at metal-filled octahedral holes, at the mid dot of the

first (5) and fourth (1) components. The conjugate polytype

151212 has both sets of inversion centers at empty octahedral

voids, those corresponding to the mid dot of the second (5)
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Figure 7
In an MX2 polytype showing a TT-type mirror line in its CRZS, the
distribution of asterisks (see text) satisfies the mirror-line operation. (a)
When P/2 is even, both extremities of the TT line are filled positions or
else they are empty. (b) If P/2 is odd, one of these extremities is filled and
the other is empty.



and fifth (1) components. For those who only believe in the A,

B, C way of thought, this will not be difficult to check. For the

conjugate pair 71 and 17, the inversion centers are respectively

at empty and filled octahedral holes. In general, it helps if the

CRZS be drawn and the position of the TT line ascertained: it

always goes through the central dot of two opposite odd runs.

Let these odd runs contain r and s dots, respectively. If the

Zhdanov symbol begins with r, the parity of (r � 1)/2 will

determine which inversion centers are at filled octahedra and

which at empty ones: if the parity is even, the inversion centers

are at filled octahedra, if it is odd, at empty ones.

Another example: polytype 221221 has a TT line passing

through the two ‘ones’ in the Zhdanov symbol. We can

transform it by an even shift into 122122. Since P/2 is odd and

(1 � 1)/2 = 0 is even, the inversion center at the first octa-

hedral hole is at a metal-filled position (we know that, anyway,

because otherwise the Zhdanov symbol would be illegal), but

the other inversion center is at an empty position. The

conjugate polytype is, in this case, itself (because the CRZS

has 20 symmetry, and P/2 is odd, see Proposition 3). The

conjugate pair 9212 and 1292 are, however, different: both

have inversion centers at filled positions at the mid dot of the

first component (9 and 1, respectively) and inversion centers at

empty octahedra (central dot of 1 and 9, respectively).

Now we study the conditions under which a polytype MX2

will show a 63 screw axis. The first thing to notice is that a

molecular sandwich MX2 must generate, through the opera-

tion of the screw, another sandwich MX2 displaced 1/2 along

the stacking axis. This implies that the number of sandwiches

in the first half of the unit cell must be an integer, and hence

that the number of X layers in that half of the cell must be

even, i.e. P/2 is necessarily even. We prove the following.

Proposition 8. An MX2 polytype will have a 63 screw axis if

and only if its CRZS shows an anti-twofold rotor, and P/2 is

even.

Proof. (a) Assume first the structure has a 63 screw, hence P/2

must be even. Moreover, the subset constituted by the X

atoms must conform to the 63 symmetry, hence (Zhdanov,

1945, 1965; Patterson & Kasper, 1959; Krishna & Verma, 1966;

Iglesias, 2006b) the CRZS will have a 20 rotor.

(b) We now assume that the CRZS has an anti-twofold

rotor, and that P/2 is even. The symmetry of the CRZS implies

that the X atoms are distributed in compliance with the

operation of a 63 screw (Iglesias, 2006b). Moreover, since P/2

is even, the sandwiches (metal-filled pairs of X-atom layers)

also conform as such to the operation of the 63 screw. It only

remains to see that two symmetry-related sandwiches have

their metal layers in the correct orientation. We take the origin

at the layer on whose spheres the 63 screw is incident and

choose the positive direction of the c axis so that this A layer is

the first constituent of a metal-filled sandwich (we remember

that this is the conventional way of symbolizing these poly-

types, see x3.1). We can see (Iglesias, 2006b; Krishna & Verma,

1966) that, with these conditions, the sandwiches (A�B),

(B�A), (A�C), (C�A), (B�C) and (C�B) will generate

symmetry-related sandwiches (A�C), (C�A), (A�B), (B�A),

(C�B) and (B�C), displaced by 1/2 along the c axis. Hence the

metal layers follow the rule �Ð �; �Ð �, which means they

also obey the operation of the screw axis. Finally, as can be

seen in Fig. 8, the asterisks follow the anti-twofold rotor.

This completes the proof.

3.4.1. Space-group P63mc. If the polytype belongs to this

space group, then the X atoms taken alone must be compliant

with the operations of the group, hence the CRZS must have

at least an anti-twofold rotation (Patterson & Kasper, 1959;

Iglesias, 2006b). However, if P/2 is odd, there is no way the M

atoms could satisfy the operation of the 63 screw axis.

Therefore (cf. Proposition 8),

N
MX2

P63mcðPÞ ¼
0; P=2 odd

ATFðP=2Þ; P=2 even

�
ð30Þ

with ATFðP=2Þ as defined in equation (5). This function

adequately counts as different polytypes Z and Rev(Z), except

in those configurations belonging to point group 20mm0, where

there is necessarily a BB-type mirror line (see Propositions

2–5), and the pair is degenerate (see x3.1).

As an example, for P = 16 there are 16 MX2 polytypes

belonging to space group P63mc:

88, 323323, 161161, 422422, 1411114111, 2121221212,

2112221122 & 21111112111111, which are all self-conjugate,

and (413413, 431431), (251251, 152152), (1231112311,

1132111321) & (3112131121, 1121311213), which are pairs of

conjugates.

3.4.2. Space groups P�33�33m1 and R�33�33m. We have seen (cf.

Proposition 7) that centrosymmetric MX2 polytypes exhibit a

TT mirror line in their CRZS, and reciprocally. Hence we need

to count those CRZS having a TT line of symmetry. For sphere

stackings, that number is (Iglesias, 2006a)

ttðp; qÞ ¼ bðp; qÞ � bbðp; qÞ; ð31Þ
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Figure 8
In an MX2 polytype showing a 20 rotation in its CRZS and having P/2
even, the distribution of asterisks satisfies the operation of the anti-
twofold rotor. Moreover, if this is the only symmetry of the CRZS, the
polytypes corresponding to Zhdanov symbols Z and Rev(Z) are
different. (Note that 132132 is the reverse of 321321; cf. Proposition 1.)
If the symmetry group of the CRZS is 20mm0, the presence of m0

guarantees that both Z and Rev(Z) will represent the same polytype, by
virtue of Proposition 4.



where

bðp; qÞ ¼
X

djðp;qÞ

�ðdÞ
ð½p=2d� þ ½q=2d�Þ!

½p=2d�!½q=2d�!
ð32Þ

and [x] = integer part of x; bb(p, q) is the number of CRZS

having at least a BB-type mirror line (Iglesias, 2006a).

When p 6¼ q, every CRZS having a TT line represents two

different polytypes, corresponding to the direct and the

reversed sequences; remember that reversing the sequence is

equivalent to inverting the color (exchanging p and q) and

shifting the asterisks by one dot. This means that one of the

polytypes is counted when computing ttðp; qÞ, and the conju-

gate when computing ttðq; pÞ. Half-order subperiods of odd

sum must be added (see above); but these configurations give,

when repeated, symmetry 2mm, with one of the mirror lines of

the BB type and the other of the TT type, and hence only one

distinguishable polytype is generated in each case, by virtue of

Proposition 2. When p ¼ q, the term ttðp; pÞ contains all cases,

since color inversion is built-in. Putting all this together,

N
MX2

P�33m1
¼

PP�1

i¼1
3jði�P=2Þ

ttði;P� iÞ þ ð1� kðP=2ÞÞHmðP=2Þ; ð33Þ

where,7 again, k(n) is as defined in (4) and Hm(N) is the total

number of hexagonal stackings of spheres for period N

(Iglesias, 1981a) having a mirror line in the CRZS. Similarly,

the rhombohedral centrosymmetric cases are

N
MX2

R�33m
¼

PP�1

i¼1
36 j ði�P=2Þ

ttði;P� iÞ þ ð1� kðP=2ÞÞRmðP=2Þ ð34Þ

and the total number of rhombohedral stackings of spheres,

having a mirror line in the CRZS, Rm(P), can be found in

Iglesias (1981a).

3.4.3. Space groups P3m1 and R3m. The number for the

MX2 polytypes belonging to these noncentrosymmetric space

groups are obtained by difference:

N
MX2
P3m1ðPÞ ¼ N

MX2
H ðPÞ � N

MX2
P63mcðPÞ � N

MX2

P�33m1
ðPÞ ð35Þ

N
MX2
R3m ðPÞ ¼ N

MX2
R ðPÞ � N

MX2

R�33m
ðPÞ: ð36Þ

The results are tabulated to P = 100 in Table 3.

As a matter of example, the MX2 polytypes for P = 8 are

(enclosed in parentheses are conjugate pairs):

P63mc: 44 & 211211;

P�33m1: (71, 17) & (3212, 2123);

R�33m: (5111, 1115), (35, 53), (212111, 111212) & (311111,

111113);

P3m1: 3311 & 221111;

R3m: 62, 4121, (4211, 1124) & (3221, 1223).

And, for P = 10:

P�33m1: (7111, 1117), (5131, 1315), 4141, 55, 131131, 212212 &

(232111, 111232);

R�33m: (91, 19), (73, 37), (511111, 111115), (212131, 213121),

(313111, 111313), (3331, 1333), 3232, (5212, 2125), 11211121,

(31111111, 11111113) & (21211111, 21111121);

P3m1: 82, 6121, (3421, 4213), 3223, 4411, 331111, 222211,

(121132, 113212), 22111111 & 21121111;

R3m: (6211, 6112), (5221, 1225), (4231, 4132), (412111,

411121), 64, (5311, 1135), (4321, 4123), 4222, (421111, 411112),

212122, 121141, (322111, 211132), (321121, 123121) & (122131,

213112).

4. Concluding remarks

While trying to compute the numbers of different kinds of

polytypes, we have needed to prove a few theorems, relating

the symmetry group of the polytype with the two-color planar

point group of the cyclotomic representation of the Zhdanov

symbol (see Propositions 1–8 above). For these properties, we

have found the extensive experimental literature on these

materials to be quite incomplete, sometimes ambiguous and

mostly inconclusive. For instance, we could find nothing on the

symmetry of the Zhdanov symbol necessary to ensure that a

conjugate pair is degenerate (Propositions 2–5), except,

perhaps, the statement in Jain & Trigunayat (1977) that the

structures represented by the direct and reverse sequences

cannot be congruent unless ‘the Zhdanov symbol has a

symmetric arrangement of numbers’; but these authors do not

bother to specify which kind of symmetric arrangement will

work out (see Proposition 5). However, it must be said that

this paper (Jain & Trigunayat, 1977) is the most important

precedent the present author has found on the equivalence

between the different representations (Zhdanov symbols) of a

polytype, and it contains the all-important rules Z 
� ESðZÞ

and Z 
� OSðRevðZÞÞ. To aid in the comparison of that and

the present paper, it must be said that these authors denote as

‘literal reverse’ of Z what we call Rev(Z), and by ‘truly

reversed’ they mean what we denote by OS(Rev(Z)).

Finally, a comment on the numerical results of the

enumeration is in order. The distribution of possible polytypes

among the possible space groups has not been published

before. The bulk numbers for both kinds of polytypes are,

however, in McLarnan (1981), although in a different form,

and obtained by application of a more sophisticated (and

elegant) technique. It is then reassuring that two such different

methods of counting should give the same results. The

importance of so-called ‘double counting’ in combinatorial

problems has been stressed by Cameron (1994). We believe

our method will be of some interest for those people who do

not intend to delve into the general theory devised by Pólya

(1937; Pólya & Read, 1987) for counting sets in which there

are elements equivalent under a permutation group. These

people may appreciate the fact that this particular problem

can be solved in an elementary way, which, being of a graphic

nature, could presumably also be of help in the understanding

of other related crystallographic problems. The interest in

solving a problem by different methods is summarized in a
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sentence attributed to Pólya: ‘It is better to solve a problem

several ways, than solving several problems the same way’.

APPENDIX A

To find the commuting properties of the operators defined

above, consider a Zhdanov symbol

Z ¼ r1r2r3 . . . rk�1rkrkþ1 . . . r2n�1r2n ð37Þ

and apply successively the operators Rev and OS:

OS½Rev½Z�� ¼ rk�1 . . . r3r2r1r2nr2n�1 . . . rkþ1rk; ð38Þ

where we are assuming that
P2n

i¼k ri is an odd integer. We now

apply the operators in reverse order:

Rev½OS½Z�� ¼ Rev½rkrkþ1 . . . r2n�1r2nr1r2r3 . . . rk�1�

¼ rk�1 . . . r3r2r1r2nr2n�1 . . . rkþ1rk ð39Þ

since
Pk�1

i¼1 ri can be seen to be also odd when we recall that

the total number of layers in MX2 polytypes must be even.

Hence, OS and Rev are commuting operators, in the sense

that, if there is an odd shift at all, OS1, there can always be

found an OS2 = P � OS1 such that

Rev½OS1½Z�� ¼ OS2½Rev½Z��: ð40Þ

With a similar argument, we can conclude that ES also

commutes with Rev.
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Pólya, G. & Read, R. C. (1987). Combinatorial Enumeration of

Groups, Graphs and Chemical Compounds. New York: Springer-
Verlag.

Spears, K. E., Phelps, A. W. & White, W. B. (1990). J. Mater. Res. 5,
2277–2285.

Steinberg, I. T. (1983). Crystal Growth and Characterization of
Polytype Structures, edited by K. Krishna, pp. 7–54. Oxford:
Pergamon Press.

Strite, S. T. & Morkoç, H. (1992). J. Vac. Sci. Technol. B10, 1237–1266.
Trigunayat, G. C. (1991). Solid State Ionics, 48, 3–70.
Verma, A. R. & Krishna, P. (1966). Polymorphism and Polytypism in

Crystals. New York: John Wiley.
Wahab, M. A. & Trigunayat, G. C. (1980). Acta Cryst. A36, 1013–1016.
Zhdanov, G. S. (1945). C. R. Acad. Sci. URSS (Dokl.) 48, 39–42.
Zhdanov, G. S. (1965). Crystal Physics. New York: Academic Press.

research papers

194 Juan E. Iglesias � Enumeration of polytypes MX and MX2 Acta Cryst. (2006). A62, 178–194


